4726 Further Pure Mathematics 2

1(i) Attempt area $= \pm \Sigma(0.3 y)$ for at least three y values
Get 1.313(1..) or 1.314
(ii) Attempt \pm sum of areas (4 or 5 values)

Get 0.518(4..)

Or

Attempt answer to part (i)-final rectangle Get 0.518(4..)
(iii) Decrease width of strips

Attempt to set up quadratic in x
Get $x^{2}(y-1)-x(2 y+1)+(y-1)=0$
Use $b^{2} \geq 4 a c$ for real x on their quadratic Clearly solve to AG

Reasonable attempt at product/quotient rule
Correctly get $\mathrm{f}^{\prime}(0)=1$
Correctly get $\mathrm{f}^{\prime \prime}(0)=1$
(ii) Reasonable attempt at Maclaurin with their values
Get $1+x+1 / 2 x^{2}$

4 Attempt to divide out.
Get $x^{3}=$
$A(x-2)\left(x^{2}+4\right)+B\left(x^{2}+4\right)+(C x+D)(x-2)$
State/derive/quote $A=1$
Use x values and/or equate coeff

May be implied	
Or greater accuracy	
May be implied	
Or greater accuracy	
SC	
If answers only seen,	
$1.313(1 .$.$) or 1.314$	B2
$0.518(4 .)$.	B2
$-1.313(1 .$.$) or -1.314$	B1
$-0.518(4 .)$.	B1

Use more strips or equivalent
Must be quadratic; = 0 may be implied
Allow $=,>,<, \leq$ here; may be implied If other (in)equalities used, the step to AG must be clear
SC
Reasonable attempt to diff. using
prod/quot rule
M1
Solve correct $\mathrm{d} y / \mathrm{d} x=0$ to get $x=-1, y=1 / 4$

A1
Attempt to justify inequality e.g. graph or to show $\mathrm{d}^{2} y / \mathrm{d} x^{2}>0 \quad$ M1
Clearly solve to AG A1
Product in answer
Sum of two parts
SC
Use of $\ln y=\sin x$ follows same scheme
In $a f(0)+b f^{\prime}(0) x+c f^{\prime \prime}(0) x^{2}$
From their $f(0), f^{\prime}(0), f^{\prime \prime}(0)$ in a correct Maclaurin; all non-zero terms

Or $A+B /(x-2)+(C x(+D)) /\left(x^{2}+4\right)$; allow $A=1$ and/or $B=1$ quoted
Allow $\sqrt{ }$ mark from their Part Fract; allow $D=0$ but not $C=0$

To potentially get all their constants

Get $B=1, C=1, D=-2$

5(i) Derive/quote $\mathrm{d} \theta=2 \mathrm{~d} t /\left(1+t^{2}\right)$
Replace their $\cos \theta$ and their $\mathrm{d} \theta$, both in terms of t
Clearly get $\int\left(1-t^{2}\right) /\left(1+t^{2}\right) \mathrm{d} t$ or equiv
Attempt to divide out
Clearly get/derive AG

A1 For one other correct from cwo
A1 For all correct from cwo

B1 May be implied
M1 Not $\mathrm{d} \theta=\mathrm{d} t$

A1 Accept limits of t quoted here
M1 Or use AG to get answer above
A1
SC
Derive $\mathrm{d} \theta=2 \cos ^{2} 1 / 2 \theta \mathrm{~d} t \quad \mathrm{~B} 1$
Replace $\cos \theta$ in terms of half-angles and their $\mathrm{d} \theta(\neq \mathrm{d} t) \quad$ M1
Get $\int 2 \cos ^{2} 1 / 2 \theta-1 \mathrm{~d} t$ or
$\int 1-1 / 2 \cos ^{2} 1 / 2 \theta .2 /\left(1+t^{2}\right) \mathrm{d} t \quad \mathrm{~A} 1$
Use $\sec ^{2} 1 / 2 \theta=1+t^{2} \quad$ M1
Clearly get/derive AG A1
(ii) Integrate to $a \tan ^{-1} b t-t \quad$ M1

Get¹⁄2 $\pi-1$
A1
$6 \quad$ Get $k \sinh ^{-1} k_{1} X$
Get $1 / 3 \sinh ^{-1} 3 / 4 x$
Get $1 / 2 \sinh ^{-1} 2 / 3 x$
M1

A1
A1
M1
Attempt to use correct ln laws to set up a solvable equation in a
Get $a=2^{1 / 3}$. $3^{1 / 2}$

M1
A1

For either integral; allow attempt at ln version here
Or ln version
Or \ln version

Or equivalent

7(i)

(ii) Reasonable attempt at product rule, giving two terms
Use correct Newton-Raphson at least once with their $\mathrm{f}^{\prime}(x)$ to produce an x_{2}
Get $x_{2}=2.0651$
Get $x_{3}=2.0653, x_{4}=2.0653$
(iii) Clearly derive coth $x=1 / 2 x$

Attempt to find second root e.g. symmetry Get ± 2.0653

8(i)
(a) Get $1 / 2\left(\mathrm{e}^{\ln a}+\mathrm{e}^{-\ln a}\right)$

Use $\mathrm{e}^{\ln a}=a$ and $\mathrm{e}^{-\ln a}=1 / a$
Clearly derive AG
(b) Reasonable attempt to multiply out their attempts at exponential definitions of cosh and sinh
Correct expansion seen as $\mathrm{e}^{(x+y)}$ etc.
Clearly tidy to AG
(ii) Use $x=y$ and $\cosh 0=1$ to get AG
(iii) Attempt to expand and equate coefficients

Attempt to eliminate R (or a) to set up a solvable equation in a (or R)

Get $a=\frac{3}{2}$ (or $R=12$)
Replace for a (or R) in relevant equation to set up solvable equation in R (or a) Get $R=12$ (or $a=3 / 2$)
(iv) Quote/derive $\left(\ln ^{3} / 2,12\right)$

9(i) Use $\sin \theta \cdot \sin ^{n-1} \theta$ and parts

B1 $y= \pm 1$ asymptotes; may be implied if seen as on graph

May be implied

One correct at any stage if reasonable cao; or greater accuracy which rounds

AG; allow derivation from AG Two roots only
\pm their iteration in part (ii)

A1 Ignore if $a=2 / 3$ also given
y-axis asymptote; equation may be implied if clear

Shape

With $\mathrm{e}^{-(x-y)}$ seen or implied

$$
\begin{aligned}
& \left(13=R \cosh \ln a=R\left(a^{2}+1\right) / 2 a\right. \\
& \left.5=R \sinh \ln a=R\left(a^{2}-1\right) / 2 a\right) \\
& \mathrm{SC} \\
& \text { If exponential definitions used, } \\
& 8 \mathrm{e}^{x}+18 \mathrm{e}^{-x}=\mathrm{Re}^{x} / a+R a \mathrm{e}^{-x} \text { and } \\
& \text { same scheme follows }
\end{aligned}
$$

On their R and a

Reasonable attempt with 2 parts, one yet to be integrated

Get
$-\cos \theta \cdot \sin ^{n-1} \theta+(n-1) \int \sin ^{n-2} \theta \cdot \cos ^{2} \theta \mathrm{~d} \theta$
Replace $\cos ^{2}=1-\sin ^{2}$
Clearly use limits and get AG
(ii) (a) Solve for $r=0$ for at least one θ

Get $(\theta)=0$ and π

(b)Correct formula used; correct r

Use $6 I_{6}=5 I_{4}, 4 I_{4}=3 I_{2}$
Attempt I_{0} (or I_{2})
Replace their values to get I_{6}
Get $5 \pi / 32$
Use symmetry to get $5 \pi / 32$

Or

Correct formula used; correct r M1
Reasonable attempt at formula
$(2 i \sin \theta)^{6}=(z-1 / z)^{6} \quad$ M1
Attempt to multiply out both sides
(7 terms)
M1
Get correct expansion A1
Convert to trig. equivalent and integrate their expression

M1
Get $5 \pi / 32$
A1

Or

Correct formula used; correct r
Use double-angle formula and attempt to cube (4 terms)M1

Get correct expression A1
Reasonable attempt to put $\cos ^{2} 2 \theta$ into integrable form and integrate
Reasonable attempt to integrate $\cos ^{3} 2 \theta$ as e.g. $\cos ^{2} 2 \theta \cdot \cos 2 \theta$ M1

Get $5 \pi / 32$

Signs need to be carefully considered
θ need not be correct Ignore extra answers out of range

General shape (symmetry stated or approximately seen)

B1 Tangents at $\theta=0, \pi$ and max r seen

May be implied but correct use of limits must be given somewhere in answer
May be $\int r^{2} \mathrm{~d} \theta$ with correct limits At least one

$$
\left(I_{0}=1 / 2 \pi\right)
$$

cwo
cwo

