Mark Scheme

4726 Further Pure Mathematics 2

1(i)	Attempt area = $\pm \Sigma(0.3y)$ for at least three y values	M1	May be implied
	Get 1.313(1) or 1.314	A1	Or greater accuracy
(ii)	Attempt ± sum of areas (4 or 5 values) Get 0.518(4)	M1 A1	May be implied Or greater accuracy SC If answers only seen, 1.313(1) or 1.314 B2 0.518(4) B2 -1.313(1) or -1.314 B1 -0.518(4) B1
	Or		
	Attempt answer to part (i)-final rectangle Get 0.518(4)	M1 A1	
(iii)	Decrease width of strips	B1	Use more strips or equivalent
2	Attempt to set up quadratic in x Get $x^2(y-1) - x(2y+1) + (y-1)=0$ Use $b^2 \ge 4ac$ for real x on their quadratic Clearly solve to AG	M1 A1 A1	Must be quadratic; = 0 may be implied Allow =,>,<, \leq here; may be implied If other (in)equalities used, the step to AG must be clear SC Reasonable attempt to diff. using prod/quot rule M1 Solve correct dy/dx=0 to get $x=-1, y = \frac{1}{4}$ A1 Attempt to justify inequality e.g. graph or to show $\frac{d^2y}{dx^2} > 0$ M1 Clearly solve to AG A1
3(i)	Reasonable attempt at chain rule Reasonable attempt at product/quotient rule Correctly get f '(0) =1 Correctly get f''(0) = 1	M1 M1 A1 A1	Product in answer Sum of two parts SC Use of $\ln y = \sin x$ follows same scheme
(ii)	Reasonable attempt at Maclaurin with their	M1	In $af(0) + bf'(0)x + cf''(0)x^2$
	values Get $1 + x + \frac{1}{2}x^2$	A1 $$	From their f(0), f'(0), f''(0) in a correct Maclaurin; all non-zero terms
4	Attempt to divide out.	M1	Or $A+B/(x-2)+(Cx(+D))/(x^2+4)$; allow $A=1$ and/or $B=1$ quoted
	Get $x^3 =$ A(x-2)(x ² +4)+B(x ² +4)+(Cx+D)(x-2)	M1	Allow $\sqrt{\text{mark from their Part Fract;}}$ allow $D=0$ but not $C=0$
	State/derive/quote A=1	A1	
	Use <i>x</i> values and/or equate coeff	M1	To potentially get all their constants

physicsandmathstutor.com

Mark Scheme

June 2009

Get <i>B</i> =1, <i>C</i> =1, <i>D</i> =-2	A1 A1	For one other correct from cwo For all correct from cwo
Derive/quote $d\theta=2dt/(1+t^2)$ Replace their $\cos \theta$ and their $d\theta$, both in terms of <i>t</i> Clearly get $\int (1-t^2)/(1+t^2) dt$ or equiv Attempt to divide out Clearly get/derive AG	B1 M1 A1 M1 A1	May be implied Not $d\theta = dt$ Accept limits of t quoted here Or use AG to get answer above SC Derive $d\theta = 2\cos^{2t}/2\theta dt$ B1 Replace $\cos\theta$ in terms of half-angles and their $d\theta$ ($\neq dt$) M1 Get $\int 2\cos^{2t}/2\theta - 1 dt$ or $\int 1 - 1/2\cos^{2t}/2\theta \cdot 2/(1+t^2) dt$ A1 Use $\sec^{2t}/2\theta = 1+t^2$ M1 Clearly get/derive AG A1
Integrate to $a \tan^{-1} bt - t$ Get ¹ /2 π – 1	M1 A1	
Get $k \sinh^{-1}k_1x$ Get $\frac{1}{3} \sinh^{-1}\frac{3}{4}x$ Get $\frac{1}{2} \sinh^{-1}\frac{2}{3}x$ Use limits in their answers Attempt to use correct ln laws to set up a solvable equation in <i>a</i> Get $a = 2^{\frac{1}{3}} \cdot 3^{\frac{1}{2}}$	M1 A1 A1 M1 M1 A1	For either integral; allow attempt at ln version here Or ln version Or ln version
	Derive/quote $d\theta=2dt/(1+t^2)$ Replace their $\cos \theta$ and their $d\theta$, both in terms of t Clearly get $\int (1-t^2)/(1+t^2) dt$ or equiv Attempt to divide out Clearly get/derive AG Integrate to $a \tan^{-1} b t - t$ Get $l/2\pi - 1$ Get $k \sinh^{-1} k_1 x$ Get $l/3 \sinh^{-1} \frac{3}{4} x$ Get $l/3 \sinh^{-1} \frac{3}{4} x$ Use limits in their answers Attempt to use correct ln laws to set up a solvable equation in a	A1Derive/quote $d\theta = 2dt/(1+t^2)$ B1Replace their $\cos \theta$ and their $d\theta$, both inM1terms of tClearly get $\int (1-t^2)/(1+t^2) dt$ or equivA1Attempt to divide outM1Clearly get/derive AGA1Integrate to $a \tan^{-1} b t - t$ M1Get $\frac{1}{2}\pi - 1$ A1Get $k \sinh^{-1}k_1x$ M1Get $\frac{1}{3} \sinh^{-1}\frac{3}{4}x$ A1Get $\frac{1}{3} \sinh^{-1}\frac{3}{4}x$ A1Use limits in their answersM1Attempt to use correct ln laws to set up a solvable equation in a M1

4726

June 2009

B1	y-axis asymptote; equation may be
	implied if clear

- B1 Shape
- B1 $y=\pm 1$ asymptotes; may be implied if seen as on graph

(ii)	Reasonable attempt at product rule, giving two terms	M
	Use correct Newton-Raphson at least once with their f '(x) to produce an x_2	M
	Get $x_2 = 2.0651$	A1
	Get $x_3 = 2.0653, x_4 = 2.0653$	A1
(iii)	Clearly derive $\coth x = \frac{1}{2}x$	B1
	Attempt to find second root e.g. symmetry Get ± 2.0653	M
		A1
8(i)	(a) Get $\frac{1}{2}(e^{\ln a} + e^{-\ln a})$	M
	Use $e^{\ln a} = a$ and $e^{-\ln a} = \frac{1}{a}$	M
	Clearly derive AG	A1
	(b) Reasonable attempt to multiply out their attempts at exponential definitions of cosh and sinh	M
	Correct expansion seen as $e^{(x+y)}$ etc. Clearly tidy to AG	A1 A1
(ii)	Use $x = y$ and $\cosh \theta = 1$ to get AG	B1
(iii)	Attempt to expand and equate coefficients	M
	Attempt to eliminate R (or a) to set up a solvable equation in a (or R)	M
	Get $a = \frac{3}{2}$ (or $R = 12$)	A1
	Replace for a (or R) in relevant equation to set up solvable equation in R (or a)	M1
	Get $R=12$ (or $a = \frac{3}{2}$)	A1
(iv)	Quote/derive $(\ln^3/_2, 12)$	B1
		B1
9(i)	Use $\sin\theta . \sin^{n-1}\theta$ and parts	M

M1	
M1	May be implied
A1√ A1	One correct at any stage if reasonable cao; or greater accuracy which rounds
B1	AG; allow derivation from AG Two roots only
M1 A1√	\pm their iteration in part (ii)
M1 M1 A1	
M1	4 terms in each
A1 A1	With $e^{-(x-y)}$ seen or implied
B1	
M1	$(13 = R \cosh \ln a = R(a^2 + 1)/2a$ 5 = R sinh lna = R(a ² -1)/2a)
M1	SC If exponential definitions used, $8e^{x} + 18e^{-x} = Re^{x}/a + Rae^{-x}$ and same scheme follows
A1 M1	same scheme fonows
A1	Ignore if $a=^{2}/_{3}$ also given
$B1\sqrt{B1}$	On their R and a
M1	Reasonable attempt with 2 parts, one yet to be integrated

physicsandmathstutor.com

Mark Scheme

A1

June 2009

Get	
$-\cos\theta.\sin^{n-1}\theta + (n-1)\int\sin^{n-2}\theta.\cos^2\thetad\theta$	
Replace $\cos^2 = 1 - \sin^2$	
Clearly use limits and get AG	

(ii) (a) Solve for r=0 for at least one θ Get $(\theta) = 0$ and π

(b)Correct formula used; correct <i>r</i>
Use $6I_6 = 5I_4$, $4I_4 = 3I_2$
Attempt I_0 (or I_2)
Replace their values to get I_6
Get 5 $\pi/32$
Use symmetry to get $5\pi/32$

Or	
Correct formula used; correct r	M1
Reasonable attempt at formula	
$(2\mathrm{isin}\theta)^6 = (z - 1/z)^6$	M1
Attempt to multiply out both sides	
(7 terms)	M1
Get correct expansion	A1
Convert to trig. equivalent and integrate their	
expression	M1
Get $5\pi/32$	A1

Or Correct formula used; correct r M1 Use double-angle formula and attempt to cube (4 terms) M1 Get correct expression A1 Reasonable attempt to put $\cos^2 2\theta$ into integrable form and integrate M1 Reasonable attempt to integrate $\cos^{3}2\theta$ as e.g. $\cos^{2}2\theta$. $\cos^{2}\theta$ M1 cwo Get 5π/32 A1

	e ,
M1 A1	
M1 A1	θ need not be correct Ignore extra answers out of range
B1	General shape (symmetry stated or approximately seen)
B1	Tangents at $\theta=0, \pi$ and max <i>r</i> seen
M1 M1 M1 A1 A1	May be $\int r^2 d\theta$ with correct limits At least one $(I_0 = \frac{1}{2\pi})$ May be implied but correct use of limits must be given somewhere in answer
M1	

cwo

Signs need to be carefully considered

23